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Dynamic Response of an Anti-plane Shear Crack in a Functionally 
Graded Piezoelectric Strip 
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The dynamic response of a cracked functionally graded piezoelectric material (FGPM) under 

transient anti-plane shear mechanical and in-plane electrical loads is investigated in the present 

paper. It is assumed that the electroelastic material properties of the FGPM vary smoothly in the 

form of an exponential function along the thickness of the strip. The analysis is conducted on 

the basis of the unified (or natural) crack boundary condition which is related to the ellipsoidal 

crack parameters. By using the Laplace and Fourier transforms, the problem is reduced to the 

solutions of Fredholm integral equations of the second kind. Numerical results for the stress 

intensity factor and crack sliding displacement are presented to show the influences of the elliptic 

crack parameters, the electric field, FGPM gradation, crack length, and electromechanical 

coupling coefficient. 
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1. Introduction 

The issue of how to impose the electrical 

boundary condition along the crack surfaces in 

piezoelectric modeling is remained still an open 

problem. Conventionally, two kinds of electrical 

boundary condition along the crack surfaces have 

been usually considered; the permeable and the 

impermeable crack conditions. These two condi- 

tions may be regarded as the bounding cases 

where the permittivity of the crack is assumed to 

be infinite and zero, respectively. If the permeable 

model is used to analyze the crack instability, 

the applied electric load would contribute noth- 

ing to the fracture load. Such a conclusion would 
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contradict experimental findings. This is because 

the presence of an electric load can either promote 

or retard crack growth, depending upon the mag- 

nitude and the direction of the electric load. On 

the other hand, based on the impermeable crack 

assumption, the failure strength for a piezoelectric 

material under the combined electric and mec- 

hanical loads has been qualitatively predicated. 

However, with this condition being enforced, the 

electric displacement intensity factor depends on 

the electric load, and the energy release rate is 

always negative only in the presence of electric 

loading, irrespective of its sign. This also con- 

tradicts the available experimental observations. 

Recently, the concept of functionally graded 

materials has been extended into the studies of 

fracture behaviors in piezoelectric materials (Jin 

and Zhong, 2002 ; Li and Weng, 2002 ; C h e n  et 

al., 2003a, 2003b; Wang, 2003; Shin and Kim, 

2003) with the development in modern material 

processing technology. 

The present paper investigates the problem of 
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a crack in a functionally graded piezoelectric 

ceramic strip under the combined transient anti 

plane shear and in-plane electrical loading. The 

analysis has been conducted on the basis of the 

electrically unified (or natural) crack boundary 

condition (Xu and Rajapakse, 2001 ; Wang and 

Mai, 2003) described in Section 3, which may 

correct the discrepancies between the theory and 

experiment. It is assumed that the material prop- 

erties of the functionally graded piezoelectric ma- 

terial (FGPM) vary continuously in terms of an 

exponential function along the thickness of the 

strip. By using integral transform techniques, the 

problem is first reduced to two pairs of dual 

integral equations and then into Fredholm inte- 

gral equations of the second kind. Numerical 

results for the stress intensity factor (SIF) and 

the crack sliding displacement (CSD) are shown 

graphically to illustrate the influences of the 

elliptic crack parameters, the electric field, the 

FGPM gradient, the crack length, and the elec- 

tromechanical coupling coefficient (EMCC). 

2. Problem Statement and Governing 
Equations 

Consider a crack of length 2a in an infini- 

tely long functionally graded piezoelectric strip, 

which is subjected to the combined mechanical 

and electric transient loads as shown in Fig. 1. A 

set of Cartesian coordinates (x, y, z) is attached 

to the center of the crack for reference purposes. 

The FGPM poled with z axis occupies the region 
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Fig. 1 Anti plane shear crack in a functionally 
graded piezoelectric strip 
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( - - o v < x < o z ,  -hz<-y<-hl, 2h=hl+hz),  and 

is sufficiently thick in the z direction to allow a 

state of anti-plane shear. The transient shear 

stress, r0H(t) ,  and electric displacement, Doll 
( l ) ,  are exerted on the top and bottom surfaces. 

Here H ( t )  denotes the Heaviside unit step func- 

tion of the time I. For convenience, we assume 

that the functionally graded piezoelectric strip 

consists of upper (y_>0 thickness ha) and lower 

(y_<0 thickness h2) regions. 

The electroelastic boundary value problem is 

simplified considerably if one is only interested in 

the out of-plane displacement and the in-plane 

electric fields, viz. 

Uxi=U,~=o, uzi:w~(x, y, t), (l) 
Exi=Ex~(X, y, l), Eye=Eye(X, y, t) ,  E ~ = 0  

in which uki and Em(k=x ,  y, z) are displacem- 

ent and electric field components, respectively, 

and the subscripts i : l ,  2 stand for upper and 

lower regions of the FGPM, respectively. The 

electric fields Exz and Eyi a r e  related to the 

electric potential ~b~ by the following form : 

~q)i Ey~-- (2) 
Ex~-- 3x " 3y 

Assume that the shear modulus c44 (y), the piezo- 

electric constant els(y) and the dielectric per- 

mittivity dn (y) are the functions of y, so that the 

constitutive equations are written as 

rxz~=c44iy; 3x els(y) 3x 

ryz~=c44(y) +els(y) 3y 

(3) 

3Wi d 3~i 
Dx~=e,5(y) O x -  11(y) Ox 

awi aq5~ 
Dyi=el~(y)~y--d ,~(y)  3y 

(4) 

where (rxzi, ryzi) are the shear stress components, 

and (Dxi, Dyi) are the electric displacement com- 

ponents. 
Substituting Eqs. (3) and (4) into the lbllow- 

ing equilibrium equations for the stresses and the 

electric displacements : 
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onr~i ~ = p ( y )  3Zwi OD~ F 3Dyi 
& ~ , 3t ~' ax Oy 

~ O  (5) 

yields 

0c44(y) Ow~ 
c~ (y) V'~w~ + e,~ (y) V2 r ay oy (0) 

+ 3y @ 3t z 

els (v) V 2 w i -  dn (y) V~r -F c~e15 (y) dw~ 
dy Oy 

(7) 
3dn(y) ar 

ay ay 

where p (y )  is the density of FGPM and ~ 72~ 

(0z/&"c z) d-(02/0y z) is the two dimensional La- 

placian operator. 

The material properties of the FGPM are sup- 

posed to be one dimensionally dependent and 

described in terms of exponential functions along 

the strip thickness (Jin and Zhong, 2002 ;Chen et 

al., 2003a, 2003b; Wang, 2003; Shin and Kim, 

2003). But to overcome the complexity of the 

mathematics involved, the focus is limited on a 

special class of FGPMs in which the variations of 

these properties are in the same gradient. There- 
fore, 

C44 (Y) : C440 e2Py, els (y)----e~ 2~y 
(8) 

dn ( y ) = c~ e 2py, p ( y ) = poe 2py 

Substituting Eq. (8) into Eqs. (6) and (7), leads 
to 

cO44V.zu,, + eOsV2(ai + 2cO l~ 3w~ 

a(~)i = p0 a2Wi (9)  
+ 2e~ 31 z 

eOsV2w _ dO V., r  2eOsfl Ow~ 
@ 

(10) 
0 ^ 3 r  0 --2d{1 ]5 ~ - y  = 

Eqs. (9) and (10) can be decoupled by intro- 

ducing the Bleustein function (Bleustein, 1968) 

given by r176176  which reduces 
Eqs. (9) and (10) to 

V2wi + 2/~ o q w i  1 32ZV~ 
ay (CO) 2 at z ( l l )  

V'zr + 2/9 ~ = 0  (12) 

where C ~ is a speed of the piezoelectrically 

stiffened bulk shear wave, defined by 

~/'~ (ei~ 2 
C o`= ~ with po=/ . t (0 )=-cO+ (13) 

d~ l  

3 .  S o l u t i o n  P r o c e d u r e  

As usual, the crack problem can be separated 

into two subproblems and solved by superposi- 

tion, one corresponding to the piezoelectric strip 

with no crack and the other corresponding to 

the piezoelectric strip with a crack for which 

the ant i -plane shear stress and in plane electric 

displacement applied at the crack surfaces are 

prescribed as the negative of those produced by 

the former, and the strip boundaries are also 

governed by appropriate conditions. From the 

viewpoint of fracture mechanics, the practical 

interest is the singular electroelastic field due to 

the presence of the crack. Consequently, the at- 

tention is limited to the perturbation solution for 

a crack. 

Following the concepts of Xu and Rajapakse 

(2001) and Wang and Mai (2003), we introduce 

a newly defined electric crack condition para- 

meter (ECCP),  Dr=D~/Do. Here D~ is the norm- 

al component of the electric displacement on 

the crack surfaces. It is noted that Dr is zero for 

an impermeable crack, (Dr)Pe~ for a permeable 

crack to be determined in Section 4, and un- 

known (yet- to-be-determined) for a limited per- 
meable crack depending on the ellipsoidal crack 

parameters. Then the boundary conditions on the 

cracked plane y = 0  can be stated as follows : 

vyzi(x, o, t ) = - r o l l ( t ) ,  (0-<x<a) (14) 

ua(x, O, t )=w2(x ,  O, t), (a<_x<ov) (15) 

Dyi(x, O, t ) = - G o H ( t ) ,  (0-<x<a) (10) 

r 0, l ) = r  0, t ) ,  (a<_x<oz) (17) 

where 

Go=Do-  D~= Do( I - Dr) (18) 

On the surfaces y = h l ,  y = - h 2  and y--O, the 

traction and electric displacement boundary con- 
ditions are 
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~yzl(X, h~, t) =rr,2(x, -hz, t ) = 0 ,  (Ix 1<oo) (19) 

Dye(x, h,, t) = Dy2(x, - hz, t ) = 0 ,  (Ix [<co) (20) 

r ,~(x,  0, t )=r ,~2(x ,  0, t) ,  ( a < x < o o )  (21) 

Dx~(x, O, t)=Dxz(X, 0, t ) ,  ( a_<x<oo)  (22) 

Introducing the Laplace transform pair 

the electric displacement in terms of Ak~(s, 19) 
and B~i(s, [). For instance, 

r,%~ (x, y, p) 

-2p~ fo| TzAeiera]cos(sx)ds 

+ d, 

(31) 

(p) = fo~f ( t) e-P* dt (23) f* 

f ( t ) = 2 ~ f s / * ( p ) e P ' d  p (24) 

with B r  being the Bromwich path of integration 

and i = , / - -  1. 
Applying first the Laplace and Fourier cosine 

transforms to governing equations, Eqs. (11) and 
(12), and then taking the inverse Fourier cosine 
transforms, the following results are obtained : 

w7 (X, y, iO)=~foo~[Ali(s, P)e rty (25) 
+Azi(s, P) e'~Y] cos (sx) ds 

9 
r y, b)=- foo IB.(s, p t ,  (26) 

+B2,(s ,  P) eq~] cos (sx) ds 

where 

7~=--t3+7,f~[~ 2, ?'z-------/~--~/'g2+/~ z (27) 

q , = - ~ +  s ~ j s ~  ~, q ~ = - ~ -  s , /U+~ (28) 

7 = ~ s 2 +  (p/C o) z (29) 

and Aki(s, P) and Bki(s, P) (k=l ,  2) are the 
unknowns to be determined. 

Futhermore, it is clear that the electric potential 
r (x, y, b) in the Laplace transform domain is 
given by 

r (x, y, p) 

: 2  f ~[Bt'(s'p)eq~+B2'(s'p)eqalc~ (30) 

0 
els 2 A + .,o - -[  [ ~,.(s, P)e'~+A~,(s, P)er~]cos(sx)& 
dn ~ do 

With the aid of constitutive equations, from 
Eqs. (3) and (4), it is not difficult to obtain the 
expressions for the components of the stress and 
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D;. (x, y, p) 

_ 2d~z'Yfo~[q,B,,e,,Y+q2B2ieq~]cos(sx)ds (32) 

Applications of the continuity conditions on 
y = 0 ,  Eqs. (21) and (22), lead to 

7~[AH(s, P)-Ax2(s,  P)] (33) 
= - 72 [Az ,  (s ,  p) - A22 (s ,  p) ] = D (s ,  p) 

ql[ Bu (s, P)-B~z(s,  p)]  (34) 
=-qz[B21(s, p)-Bz2(s,  p) ]=E(s ,  p) 

where D(s, p) and E(s,  D) are to be determined. 
Also the following relationships are found from 
Eqs. (19) and (20) with the aid of  Eqs. (33) and 
(34) : 

Au(s ,  D ) = -  72 Azt(S, P)e ~r2-r~ (35) 
71 

l - - e  ~r'-r'~h~ D(s, p) (36) 
Az1(S, P ) =  l_e(r=_r.)r 72 

B~(s, p ) = -  q2 Bz~(s. P)e (q~-q'~h' (37) ql 

1--e (q'-q'~h2 E(s, p) (38) 
Bzl (s, P) = 1 - -  e t q z - q ' ) ( h l + h 2 )  (12 

After substituting Eqs. (33)-(38) into Eqs. (14)- 
(17) of the two mixed boundary conditions, we 
obtain the following two simultaneous dual inte- 
gral equations, 

fo~SFl(s, P~(s, P) (sx) ds P) cos  

/ eOs 
_ z / r ~ 1 7 6  ( O < x ~ a )  

2~p all -- 

(39) 

fo~Pl(s, p)cos(sx)ds=O, ( a ~ x < o o )  (40) 
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fo ~ z Go sF~(s, p) Pz(s, P)cos(sx)ds= 21) d~ ' 

( 0 N x < a )  
(41) 

ex~ p) ] cos (sx) ds =0, fo| p)+dO ~ P~(s, 

( a < x < c o )  
(42) 

where 

1 ( )'~-7t ] D(s,  p) P~(s, P ) = T  \ r~r~ 

1 ( q -q, ) E(s ,  1)1 Pz(s, P ) = 2 \  q~q2 / 

(43) 

F,(s, p ) - s  r~-r~ / Q(s, p) 

O(s, 1)1 
s , ~  

(44) 

2 (  q~qz l 
F~(s, p ) = s  \ q~-q~ / RM(S) 

7~ R (s, p) 
s, /~ + fl ~ 

(45) 

O(s, 19 )=  i__r ) (46) 

RM(s) =M(s ,  p)R(s ,  p) (47) 

[1 - - e  (q2-q')h' ] [ I - - e  (q~-q')h~] 
R(s ,  p )= M(s,  p) [ 1 - e  (q'-q')(~'+h~)] (48) 

( qz--ql ) 
q l  q 2  

~ / ~  (49) 

\ 7~7z / 

The solution of the resulting dual integral equa- 
tions (39) - (42) can be attempted by using techni- 
ques, outlined in Copson (1961). That is, if we 
choose Pl(s, P) and P2(s, P) given by 

( ~  .~ Ea  2 6'15 ~ -  * / 
~2~ ~, (50) Pfls, pl =SSUg.mp ro+~fGo p) Jo(sa~) d~ 

za2 Go fo~4~*(~, p)Jo(sa~)d~ (51) ~ ( s , h ) =  2p dr1 

where J0( ) stands for the zero order Bessel 
function of the first kind, and ,QI*(~ e, p) and 
ff32"(~, P) are auxiliary functions to be deter- 
mined. Putting Eqs. (50) and (51) into Eqs. (39)- 
(42), it is easily shown that Eqs. (40) and (42) 
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are automatically satisfied, and Eqs. (39) and 
(41) become the following Fredholm integral 
equations of the second kind: 

1,(~1, .b) LI(~,  ]))d7]=4'~ (59) s2,* (~, p)+fo (~' ~' 

1 * 

S2;(~, p) + fo S2~ (~, p)L,~(~, ~, p)dT=, , /~  (53) 

with the kernels LI (~ ,  z?, p) and L2(~ e, z/, p), 
given by 

L , (~ ,  V, P) 
(54) 

=~@~ fo=s[F, (s/a, p) -- l]]o(s$)Jo(s~) ds 

(55) 
= f4~ l = s [  F2(s/ P) - l]Jo(s4)Jo(sV)ds 

. / 0  

4. Discussions 

4.1 Intensity factors and crack sliding dis- 
placement 

Since of practical interest are the near tip fields 
around the crack, only the asymptotic fields in 
the neighborhood of the propagating crack will 
be presented here. The portions of PI(s, P) and 
P2(s, ]9) that contribute to the singular behaviors 
are found from the integration by part of Eqs. 
(50) and (51) in the tbrms: 

Zrro(l+Ao)a 1 ~*( l ,p)  
P~(s, P)-  Jl(sa) +'" (56) 212o s p 

zDo(l-Dr)a l ~ ; ( I ,p )  
P2(s, P) = -  2dO s p J~(sa) +... (57) 

where 

A 0 = & ( l - D r ) ,  ;~= d5 Do (58) 
d ~ ro 

and J l (  ) denotes the first-order Bessel function 
of the first kind. 

Substituting Eqs. (56) and (57) into Eqs. (31) 
and (32), respectively, it follows that 

Kr  ( t) = lim ~J2rc(x- a) ryzi(X, O) 
x-a+ (59) 

= Z'o,/na [ (I +Ao) M1 (t) -AoM2(t )  j 

KV(t) = l i r a  , / 2 z ( x - - a ) D y e ( x ,  O) 
. . . .  (60) 

=D0(~ - D r )  ? ~ M 2  (t) 
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where 

1 .(21"(1, p) eP, d p (6t) M,(t) = ~ f T  1) 

I f ~2~ ( I. p) ePtdp (62) M., ( t ) = _, zcz .,~=~% h 

and I f r ( t )  and K~(t)  represent the dynamic 

stress intensity factor (DSIF) and the dynamic 

electric displacement intensity factor, respecti- 

vely. 

The CSD, zJw(x, O, t), can be easily deter- 

mined by substi tuting Eq. (56) into the following 

Aw(x ,  O, t )=w~(x ,  O, t) - w 2 ( x ,  O, t) 
4 

= ~ f o  P~(s. p)cos(sx)dx ,  (631) 

( 0 < x < a )  

then 

Aw(ix, O, t) 

2r0a [ 1 - - [ x ' ~ 2  (64) 
-- c4~ ( I + A ~  \ a /  

To obtain the convent ional  solutions based on 

the impermeable and the permeable crack ass- 

umptions,  we must find the value of an u n k n o wn  

constant  D~ (or O~) which is contained in 

Eqs. (59) and (60). Firstly, by l e t t i n g D r = O  (or 
A 0 = ~ ) ,  the impermeable solutions are easily 

obtained : 

Kr(t)=ror ( l + g ) M l ( t ) - 2 ~ M 2 ( t )  ] (65) 

K~(t) =Do,/~aMa(t) (66) 

zlu, (x, 0, t) 

2r0a V / I _ _ ( X ) 2  (67) 
cO4 ( 1 +k02) (l + & ) M , ( t )  

I 

Next, to find the ECCP Dr  satisfying the per- 

meable assumption,  an addi t ional  condi t ion is 

required 

E~(x ,  0 +, t )=E~2(x,  0-, t), ( 0 < x < a )  (68) 

It gives 

K 
(Dr) perm = I (69) 

A0(l - - i f )  

where 

Copyright (C) 2003 NuriMedia Co., Ltd. 

I f -  kg sZ*(~,p) ko=J(eO?/(  o o , Czi4 d{ 1 ) ( 7 0 )  l+kg  S2;(l, p ) '  

The parameter k0 is introduced as the E M C C  

in Kwon et a1.(2002) that measures the strength 

of such coupl ing in a piezoelectric solid. The 

exact permeable solution is also given in Appen-  

dix A. 

It must be addressed that the ECCP might be 

associated with another  two parameters in an 

elliptical flaw, i.e. the permittivity ratio and the 

crack aspect ratio. The permittivity ratio /c and 

the aspect ratio a are defined as K=d~ (d~ 
and ea are dielectric permittivity of the ceramic 

and ellipse interior) and a = a / b  (a and b are 

the major and minor  axes of the ellipse). From 

the well established result of Zhang  and Tong  

(1996), we can determine the ECCP ['or an elli- 

ptical flaw of the tbrm : 

l + ( l / a )  
Dr=l+( l+k2o)  (K/a) (Dr) perm (71) 

It is noted that (Dr) p e , - m = l - k ~ / s  or A0=k~ for 

the static problem. There are three limits when a 

approaches a sufficiently large value to describe a 

sharp crack. They are : 

DT --~ (Dr) pe.~ 
for a permeable crack when 

K/a --" 0 
1 

Dr---+ l + ( l + k ~ )  (/c/a') (Dr) perm 

for a limited permeable crack when 

K/a  ---+ constant  

D~ --+ 0 for an impermeable crack when 

K/if---+ CO 

4.2 Case  s tudies  

The solutions provided in the lbregoing can 

now cover several special cases; as detailed be- 
low. 

(Case 1 )  Static solution. The corresponding sta- 

tic solution is obtained by applying Tauber ian ' s  

final value theorem (Sneddon,  1972) as follows : 

.Q(e) + f01K($ ,  ~)S2(v) d~=,., '~ (72) 
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where 

l im 3Q* (~e, p) =s (~) (73) 
p - 0  

K ( &  ~) 
(74) 

=,,Tbl~sEF~r (s/a) - l]]o(S~)Jo(sS) ds 
d O  

F , ,  (s) - s R g  (s) (75) 
C J + f -  

It should be pointed out in the static problem that 

all the results on the S1F are identical irrespective 

of the electric crack assumptions, but not on the 

EDIF.  

(Case 2) : Purely elastic strip. The present results 

are readily degenerated to those of the purely 

elastic strip by considering e ~  

(Case 3): Homogeneous solution. To find the 

solutions for the homogeneous piezoelectric ma- 

terials, one should let /5' 0. In the case, 

FI(s, P) - -  87 Oh(s, P), F,z(s, p)=sF Rh(S) (76) 

where 

( 1 - e - ~ ' )  ( t - e -~ '~ )  
Q~,(s, p ) =  l_e_arh,+h,) (77) 

( 1 -- e -2sh ') (1 -- e -2sh~) 
Rh(s) = (78) 1--C 28(hl+h2) 

it is noted that the above dynamic and degen- 

erated static solutions are identical to those of 

Shin et al.(2001a, 2001b). 

( Case 4) : Solution o f  a center crack. Considering 

h~=k2=k,  the functions changed are as follows : 

Q(s, p)=tanh(v/72+f12h) (79) 

R(s,  p)=tanh(4 's2+fl2h) /M(s ,  p) (80) 

The corresponding static problem was studied 

by Li and Weng (2002) with the adoption of 

a different form of material gradation (e.g. c~ 

(y) = c ~  + a  I y 1)~). 

(Case 5): Subsurface crack parallel to the top 
surface of  a semi-infinite piezoelectric medium. 
For the case of hz---* or, it finds that 

Q(s, p ) = l - - e  (~2-r')h~ (81) 

R (s, P) = 1 -- er (s, p) (82) 

If /3=0  and D~=O, the present results can be 

reduced to those of Chert and Worswick (2002). 

(Case 6): Sohaion of  an #1finite piezoelectric 
medium. It can be easily obtained by considering 

hi, h2-~ oo then 

F~(s. p ) -  r~ 
s J r~+~"  (83) 

: - -  y 2 1 

F2(s, p) s~/'r2+[~ ~ M ( s , p )  

l im F~(s p ) = l i m F 2 ( s ,  p ) -  s 
p - o  p ~ o  v/s 2 + f12 (84) 

tbr the static problem. 

Eq. (84) is different from the result of  Jin and 

Zhong (2002) for the case when the crack pro- 

pagation speed V = 0  in their results. It is due to 

that they employed the symmetric exponential  

ffmction e I~ly instead of e py assumed herein. 

4.3 Numerical examples 
In this section, numerical  results for the static 

SIF, static CSD and DSIF  are presented. In an 

attempt to obta in  the DSIF,  the inversion of 

Laplace transform is carried out by the numerical  

method developed by Miller and Guy (1966). 

The uniform electric displacement load Do can 

be readily achieved in the laboratory by applying 

a constant  potential difference across the spec- 

imen. The relationships between electric displace- 

ment and electric field at the surfaces are tbund 

from the constitutive Eqs. (3) and (4) 

3w(x,  &, t) 
rye(X, hl, t ) : c44(h l )  

8y (85) 

--  e~  (hi) E o H  ( t )  = r0H (t )  
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8w(x,  h,,  t) 
Dy(x, h .  t)=eLf(hi) 

87 (86) 

- du  (&)  E o H  (t)  = D o l l  ( t )  

Therefore, one can obta in  

~o= kS + e 2sh' (1 +leo) ~o, 
o or ~o-- elsEo _ )o-k8 (87) 
r0 e 2~ '  ( 1 + ~ )  
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In the fol lowing numerical  analysis, we will first 

focus on the center cracked strip (i.e. hl=h2=h) 
for the sake of  compar ison with the previous 

static result (Li and Weng, 2002). 

Figure 2 displays the normalized static SIFs, 

K r / r 0 ~ ,  versus the crack length a.!h with the 

variat ion of  the gradient of  material  properties 

/3a. Here K r = K r ( t - +  oo). The static SIFs in- 

crease with the increase of  a/h  and /Ta irres- 

pective of  the electrical crack condit ion,  and the 

magnitude and direction of  electric loads. This is 

in contrast to the result of  Li and Weng (2002). 

This  may result from the different assumption in 

the material gradat ion function. Also the SIF of  

the F G P M  (~a=#0) is higher than that of  homo-  

geneous piezoelectric materials ( r  Though 

the SIF in the F G P M  is increased, this deleterious 

effect can be completely offset by the high frac- 

ture toughness of  the F G P M  and as a result, the 

residual strength of  the cracked F G P M  may be 

much higher than that of  the homogeneous  piezo- 

electric ceramic (Jin and Batra, 1996). 

The influences of  elliptic crack parameters on 

the normalized CSD,  c~  O)/(2roa), in a 

crack posit ion of  x /a=0.5  are displayed in 

Figs. 3 and 4. In Fig. 3, a computa t ion  is per- 

formed with K=1000, which is the order of  the 

permiti ivity ratio of  a ferroelectric ceramic to that 

1.4 . . . .  I . . . .  I . . . .  I ' ' ' 1  . . . .  l 
i 
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ah 

Fig. 2 Ix'7/ro,Tca versus at"h with the variation of 

/7<,,' under static loads 
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of free surface. Flaws are varied in the range of  

elliptic aspect ratio o f  100 - -<~3000 .  The  CSDs  

decrease or increase depending on the direction 

of  electric field as the crack aspect ratio increases. 

The effect of  the crack aspect ratio is smaller for 

1 ' 2 i i  I '  I I ' '  I I I ' I I I I ' I I I I i I F ~ a = O . O ,  w l F O . 2  

1 1 I k,,-i.O, x'?J::O.5, ~ tO00 

!~ "-'~-- j~:Z.~ +0.20 
~'~ ~ 1 .0~ -  -"~ 

- ~ _  +0 10 

\ ~ . . . .  +005 ...... 
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--~o ~o_ 
I 7o2o_- o,// 

0 6  I , , l ~ l , , ~ l , , , , I , , ,  
0 500 ~000 ~500 2000 2500 300c 

c~ ( = a / b )  

Fig. 3 The normalized CSD versus elliptic aspect 

ratio ct in a crack position of x/a=0.5 with 

the variation of ~0 in a center cracked piezo- 

electric strip under static loads 
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the smaller electric fields. In Fig. 4, the CSD for 

an elliptical flaw with aspect ratio a,=100 is 

plotted with the variations of/c. In this case, the 

initial value of K-----0 corresponds to the permeable 

(or conducting) crack solution. The computa- 

tional results show that the value of K has the 

significant effect on the CSD in the small range 

of/c and under large electric fields. From Figs. 3 

and 4, we can also observe that the impermeable 

solution is valid only for the problem of a non-  

slender hole (or cavity), whereas the permeable 

solution is valid only for the mathematically 

slit-like crack problem or for the problem of the 

crack whose interior is filled with a conductive 

medium. 

Figure 5 replots the influence of the gradient 

of material properties ~a  on the normalized 

CSD with the variation of electric loads. The 

magnitudes of CSDs increase with the increase 

of fla. It is observed that the growth of CSD is 

promoted or retarded in accordance with the 

direction of applied electric loads; the positive 

electric loads enhance the CSD growth, while the 

negative electric loads retard it. 

Figure 6 displays the influence of ~0 on the 

normalized CSD at a crack position of x/a=O.O 

in an elliptic flaw of x=1000 and 0~=1000. As 

mentioned by Wang and Mai (2003), the solution 

based on the unified (or natural) crack boundary 

condition falls between those obtained from the 

impermeable crack and the permeable crack. The 

impermeable crack overestimates the effects while 

the permeable crack is independent of the applied 

electric field. However, it should be noted that 

according to the report of Wang and Mai (2003), 

the crack based on the unified crack boundary 

condition would never close, but the present so- 

lution shows that the crack propagation will im- 

pede in certain negative electric fields. It may be 

resulted from the determination of the ECCP, Dr. 

The shape of deformed crack relies on the finite 

element analysis in a research of Wang and Mai 

(2003), whereas the present result is based upon 

the closed form Eq. (71). In addition, it is ob- 

served that the effect of applied electric loads on 

the CSD is linear. 

In Fig. 7, the effect of the EMCC k0, a measure 

of the strength of the electromechanical coupling 

in the piezoelectric solid, is displayed. It is ob- 

served that under the unified crack condition, 

the magnitudes of the static CSDs increase or 

decrease depending upon ~'0 with the increase of 
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Fig. 5 The normalized CSD versus x / a  with the 
variations of /ga and ~'0 in a center cracked 
functionally graded piezoelectric strip under 
static loads 
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k0. However ,  the static CSDs based on the tradi- 

t ional crack condi t ions  are constant  regardless 

of  variat ions in the E M C C .  

Next, we investigate the effects of  inertia on the 

D S I F  of  a center cracked functionally graded 

piezoelectric strip in Figs. 8-11. 

Figure  8 depicts a plot of  the normalized 

-x, 
@ 
:4 
<1 

Y 

Fig. 7 
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The maximum normalized CSD versus k0 

with the variation of ~'0 in a center cracked 

functionally graded piezoelectric strip under 

static loads 

DSIFs  K r ( t ) / v o f ~ a  versus the normalized t ime 

C~ for two different values of  the electric 

field loads ~'0. At the early stage of  impact, the 

DSIFs  increase or  decrease depending on the 

direction of  the applied electric fields, but the 

trends are fully reversed alter a certain normalized 

time, say 1.2 or so. It is also observed that the 

solution based on the unified crack boundary  

condi t ion falls between those obtained from the 

impermeable  crack and the permeable  crack as in 

the static problem. 

Figure 9 displays the influence of  the gradient  

of  material  properties ~ a  on the DSIFs.  At the 

initial impact stage, the DSIFs  decrease under the 

posit ive electric loads with the increase of  /3a, 

but increase under the negative ones. However ,  

the trend is also reversed after a certain nor- 

malized time as in Fig. 8. 

The influence of  a/h  on the DSIFs  is shown in 

Fig. 10. As the crack lengths increase, the peak 

values of  the DSIFs  tend to increase. 

The  effect of  the E M C C  on the DSIFs  is shown 

in Fig. 11. It is observed that the DSIFs  decrease 

before a ceratin normalized time, however  after 

the one those increase with the increase of  the 

E M C C ,  irrespective of  the direct ion of  electric 

fields. This is more salient under the positive 

electric loads than under the negative ones. 

J 
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Fig. 8 Kr(t)/ro~/~a versus C~ with the varia- 

tion of ~'0 
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Fig. 10 KT(t)/ro,/Td versus C~ with the varia- 

tion of a/h 

displacement have been obtained via auxiliary 

functions determined from the Fredholm integral 

equations. From the results of the current study, 

several conclusions have been obtained. 

The present solution can describe general elec- 

trical crack conditions;  especially, including the 

widely used impermeable one in the case of Dr= 
0, and the permeable one in the case of Dr= 
(Dr) perm. Steeper the exponential gradients of the 

FGPM, higher are the SIFs. The field intensity 

factors are dependent on the electrical loads, the 

gradation of the FGPM, the crack length, and the 

EMCC. For the electrically permeable case, the 

electric impact has no contribution to the intensi- 

ty factors. For the impermeable and the limited 

permeable cases, the crack growth under impact 

loads is promoted or retarded in accordance with 

the direction of the applied electric loads. 
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KT(t)/ro,~/~a versus C~ with the varia- 

tions of k0 and ~'0 

5. Conclusions 

In this paper, the transient electroelastic prob- 

lem of an anti-plane shear crack in a function- 

ally graded piezoelectric ceramic strip has been 

investigated by the integral transform approach. 

The analysis has been conducted on the basis of 

the unified (or natural) crack boundary condi- 

tion. The dynamic intensities of stress and electric 
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Appendix A 

In order to obtain the exact permeable solution, 

, Ltd. 

+ dO1\~i72  ( 72- 2q ]D(s,  P) l s in ( sx )ds :O, (A5)  

(O<x<a) 

one replaces Eq. (16) with the following: 

O~,(x, o +, t ) = D ~ ( x ,  0-, t) 
(A1) (~51(X, 0 +, t)--(/52(.~, 0-, t), (O<x<a) 

or 

Dye(x, 0 +, t ) - -Dy2(x,  0 , t) 
(A2) 

Exl(x ,  0 +, t )=Ex2(X,  0 , t),  (O<-x<a) 

Following the same procedure as shown in Sec- 

tion 3, one can find the two pairs of dual integral 

equations from Eqs. (14), (15), (A2) and (17) as 

/ ~ s F ( s ,  h)P(s ,  h)cos(sx)  d s=  ~r r0 
2 p '  (A3) 

(0_< x < a) 

fo ~P(s,  (a<_x<oo) (A4) p) cos (sx) dx=O, 

foo ~ S I ( q 2 - - q l l E ( s , / ) )  

L\  q~q2 / 
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o L qlqz 

e~ - ]cos (sx) ds-O (A6) + % (  72-r, ]D(s. p) j - , 
all1 \ YIY2 ] 

where 

P(s, Pl = @  ( 72-yl ) Dis,  Pl (A71 
\ 7172 / 

q 

F(s ,p)= ~" _ o [ ( l + ~ ) O ( s , p ) - k g R ( s ) ]  (A8) 
sv'r'+/Y 

For /~=0, Eq. (A8) is exactly the same as the 

result of Shin et al.(2001a; 2001b). 

It is readily seen from Eqs. (A5) and (A6) that 

e~ D(s, D) (A9) 
E(s. p)= d~ M(s, P) 

With the aid of the Copson's  method in the 

above Eqs. (A3) and (A4), we finally obtain a 

Fredholm integral equation ot" the second kind of 

the form : 

i * 

~*(~' P)+fo f2 (~, p)L(~, ~, p) d~= (~  (A10) 

where 

L(~ e, ~, P) 

= , / ~  fo=S[F(s/a, p) -1]Jo(s~)Jo(s~) ds (A11) 

For the case when the uniform stress roll(t) 
and the uniform electric displacement Doll(t) 
are applied at y=hl  and - h 2 ,  two field intensity 

factors and CSD are given as 

Kr ( t) = Vo,/~aM (t) (AI2) 

K~(t)  = e~ VovT~dM(t) =e~ (t) /c~ (AI3) 
�9 cO 

2r0a 

where 

1 ,(2"(1, p) eP,d p (A15) 
M(t)  = 2a-i ~ p 
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